Exact Number of Mosaic Patterns in Cellular Neural Networks

نویسندگان

  • Jung-Chao Ban
  • Song-Sun Lin
  • Chih-Wen Shih
چکیده

This work investigates mosaic patterns for the one-dimensional cellular neural networks with various boundary conditions. These patterns can be formed by combining the basic patterns. The parameter space is partitioned so that the existence of basic patterns can be determined for each parameter region. The mosaic patterns can then be completely characterized through formulating suitable transition matrices and boundary-pattern matrices. These matrices generate the patterns for the interior cells from the basic patterns and indicate the feasible patterns for the boundary cells. As an illustration, we elaborate on the cellular neural networks with a general 1× 3 template. The exact number of mosaic patterns will be computed for the system with the Dirichlet, Neumann and periodic boundary conditions respectively. The idea in this study can be extended to other one-dimensional lattice systems with finite-range interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Abundance of Mosaic Patterns for CNN with Spatially Variant Templates

This work investigates the complexity of one-dimensional cellular neural network mosaic patterns with spatially variant templates on finite and infinite lattices. Various boundary conditions are considered for finite lattices and the exact number of mosaic patterns is computed precisely. The entropy of mosaic patterns with periodic templates can also be calculated for infinite lattices. Further...

متن کامل

Cellular Neural Networks: Mosaic Patterns, bifurcation and Complexity

We study a one-dimensional Cellular Neural Network with an output function which is nonflat at infinity. Spatial chaotic regions are completely characterized. Moreover, each of their exact corresponding entropy is obtained via the method of transition matrices. We also study the bifurcation phenomenon of mosaic patterns with bifurcation parameters z and β. Here z is a source (or bias) term and ...

متن کامل

Cellular Neural Networks: Mosaic Pattern and Spatial Chaos

We consider a cellular neural network (CNN) with a bias term z in the integer lattice Z on the plane R2. We impose a symmetric coupling between nearest neighbors, and also between next-nearest neighbors. Two parameters, a and ε, are used to describe the weights between such interacting cells. We study patterns that can exist as stable equilibria. In particular, the relationship between mosaic p...

متن کامل

Cellular Neural Networks: Space-Dependent Template, Mosaic Patterns and Spatial Chaos

We consider a Cellular Neural Network (CNN) with a bias term in the integer lattice Z on the plane Z. We impose a space-dependent coupling (template) appropriate for CNN in the hexagonal lattice on Z. Stable mosaic patterns of such CNN are completely characterized. The spatial entropy of a (p1, p2)-translation invariant set is proved to be well-defined and exists. Using such a theorem, we are a...

متن کامل

Linear matrix inequality approach for synchronization of chaotic fuzzy cellular neural networks with discrete and unbounded distributed delays based on sampled-data control

In this paper, linear matrix inequality (LMI) approach for synchronization of chaotic fuzzy cellular neural networks (FCNNs) with discrete and unbounded distributed delays based on sampled-data controlis investigated. Lyapunov-Krasovskii functional combining with the input delay approach as well as the free-weighting matrix approach are employed to derive several sufficient criteria in terms of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2001